iklan

Cara Mudah Mendapatkan Uang Di Clixsense

Selasa, 28 Juni 2016

SIKLUS OTTO DAN DIESEL

A.  Definisi Mesin Otto dan Mesin Diesel
a.    Definisi Mesin Otto
Mesin diesel adalah sejenis mesin pembakaran dalam; lebih spesifik lagi, sebuah mesin pemicu kompresi, dimana bahan bakar dinyalakan oleh suhu tinggi gas yang dikompresi, dan bukan oleh alat berenergi lain (seperti busi). Mesin bensin atau mesin Otto dari Nikolaus Otto adalah sebuah tipe mesin pembakaran dalam yang menggunakan nyala busi untuk proses pembakaran, dirancang untuk menggunakan bahan bakar bensin atau yang sejenis.
Mesin bensin berbeda dengan mesin diesel dalam metode pencampuran bahan bakar dengan udara, dan mesin bensin selalu menggunakan penyalaan busi untuk proses pembakaran. Pada mesin diesel, hanya udara yang dikompresikan dalam ruang bakar dan dengan sendirinya udara tersebut terpanaskan, bahan bakar disuntikan ke dalam ruang bakar di akhir langkah kompresi untuk bercampur dengan udara yang sangat panas, pada saat kombinasi antara jumlah udara, jumlah bahan bakar, dan temperatur dalam kondisi tepat maka campuran udara dan bakar tersebut akan terbakar dengan sendirinya.
Pada mesin bensin, pada umumnya udara dan bahan bakar dicampur sebelum masuk ke ruang bakar, sebagian kecil mesin bensin modern mengaplikasikan injeksi bahan bakar langsung ke silinder ruang bakar termasuk mesin bensin 2 tak untuk mendapatkan emisi gas buang yang ramah lingkungan. Pencampuran udara dan bahan bakar dilakukan oleh karburator atau sistem injeksi, keduanya mengalami perkembangan dari sistem manual sampai dengan penambahan sensor-sensor elektronik. Sistem Injeksi Bahan bakar di motor otto terjadi diluar silinder, tujuannya untuk mencampur udara dengan bahan bakar seproporsional mungkin, Hal ini dsebut EFI.
b.   Definisi Mesin Diesel
Motor bakar diesel biasa disebut juga dengan Mesin diesel (atau mesin pemicu kompresi) adalah motor pembakaran dalam yang menggunakan panas kompresi untuk menciptakan penyalaan dan membakar bahan bakar  yang telah diinjeksikan ke dalam ruang bakar. Mesin ini tidak menggunakan busi seperti mesin bensin atau mesin gas. Mesin ini ditemukan pada tahun 1892 oleh Rudolf Diesel, yang menerima paten pada 23 Februari 1893. Diesel menginginkan sebuah mesin untuk dapat digunakan dengan berbagai macam bahan bakar termasuk debu batu bara. Dia mempertunjukkannya pada Exposition Universelle (Pameran Dunia) tahun 1900 dengan menggunakan minyak kacang. Mesin ini kemudian diperbaiki dan disempurnakan oleh Charles F. Kettering.
Mesin diesel memiliki efisiensi termal terbaik dibandingkan dengan mesin pembakaran dalam maupun pembakaran luar lainnya, karena memiliki rasio kompresi yang sangat tinggi. Mesin diesel kecepatan-rendah (seperti pada mesin kapal) dapat memiliki efisiensi termal lebih dari 50%.
Mesin diesel dikembangkan dalam versi dua-tak dan empat-tak. Mesin ini awalnya digunakan sebagai pengganti mesin uap. Sejak tahun 1910-an, mesin ini mulai digunakan untuk kapal dan kapal selam, kemudian diikuti lokomotif, truk, pembangkit listrik, dan peralatan berat lainnya. Pada tahun 1930-an, mesin diesel mulai digunakan untuk mobil. Sejak saat itu, penggunaan mesin diesel terus meningkat dan menurut British Society of Motor Manufacturing and Traders, 50% dari mobil baru yang terjual di Uni Eropa adalah mobil bermesin diesel, bahkan di Perancis mencapai 70%
·           Bagaimana mesin diesel bekerja
Diagram siklus termodinamika sebuah mesin diesel ideal. Urutan kerja mesin diesel berurutan dari nomor 1-4 searah jarum jam. Dalam siklus mesin diesel, pembakaran terjadi dalam tekanan tetap dan pembuangan terjadi dalam volume tetap. Tenaga yang dihasilkan setiap siklus ini adalah area di dalam garis siklus.
Ketika udara dikompresi suhunya akan meningkat (seperti dinyatakan oleh Hukum Charles), mesin diesel menggunakan sifat ini untuk proses pembakaran. Udara disedot ke dalam ruang bakar mesin diesel dan dikompresi oleh piston yang merapat, jauh lebih tinggi dari rasio kompresi dari mesin bensin. Beberapa saat sebelum piston pada posisi Titik Mati Atas (TMA) atau BTDC (Before Top Dead Center), bahan bakar diesel disuntikkan ke ruang bakar dalam tekanan tinggi melalui nozzle supaya bercampur dengan udara panas yang bertekanan tinggi. Hasil pencampuran ini menyala dan membakar dengan cepat. Penyemprotan bahan bakar ke ruang bakar mulai dilakukan saat piston mendekati (sangat dekat) TMA untuk menghindari detonasi. Penyemprotan bahan bakar yang langsung ke ruang bakar di atas piston dinamakan injeksi langsung (direct injection) sedangkan penyemprotan bahan bakar kedalam ruang khusus yang berhubungan langsung dengan ruang bakar utama dimana piston berada dinamakan injeksi tidak langsung (indirect injection).
Ledakan tertutup ini menyebabkan gas dalam ruang pembakaran mengembang dengan cepat, mendorong piston ke bawah dan menghasilkan tenaga linear. Batang penghubung (connecting rod) menyalurkan gerakan ini ke crankshaft dan oleh crankshaft tenaga linear tadi diubah menjadi tenaga putar. Tenaga putar pada ujung poros crankshaft dimanfaatkan untuk berbagai keperluan.
Untuk meningkatkan kemampuan mesin diesel, umumnya ditambahkan komponen :
ò  Turbocharger atau supercharger untuk memperbanyak volume udara yang masuk ruang bakar karena udara yang masuk ruang bakar didorong oleh turbin pada turbo/supercharger.
ò  Intercooler untuk mendinginkan udara yang akan masuk ruang bakar. Udara yang panas volumenya akan mengembang begitu juga sebaliknya, maka dengan didinginkan bertujuan supaya udara yang menempati ruang bakar bisa lebih banyak.
Mesin diesel sulit untuk hidup pada saat mesin dalam kondisi dingin. Beberapa mesin menggunakan pemanas elektronik kecil yang disebut busi menyala (spark/glow plug) di dalam silinder untuk memanaskan ruang bakar sebelum penyalaan mesin. Lainnya menggunakan pemanas "resistive grid" dalam "intake manifold" untuk menghangatkan udara masuk sampai mesin mencapai suhu operasi. Setelah mesin beroperasi pembakaran bahan bakar dalam silinder dengan efektif memanaskan mesin. Dalam cuaca yang sangat dingin, bahan bakar diesel mengental dan meningkatkan viscositas dan membentuk kristal lilin atau gel. Ini dapat memengaruhi sistem bahan bakar dari tanki sampai nozzle, membuat penyalaan mesin dalam cuaca dingin menjadi sulit. Cara umum yang dipakai adalah untuk memanaskan penyaring bahan bakar dan jalur bahan bakar secara elektronik.

Untuk aplikasi generator listrik, komponen penting dari mesin diesel adalah governor, yang mengontrol suplai bahan bakar agar putaran mesin selalu pada putaran yang diinginkan. Apabila putaran mesin turun terlalu banyak kualitas listrik yang dikeluarkan akan menurun sehingga peralatan listrik tidak dapat bekerja sebagaimana mestinya, sedangkan apabila putaran mesin terlalu tinggi maka dapat mengakibatkan over voltage yang bisa merusak peralatan listrik. Mesin diesel modern menggunakan pengontrolan elektronik canggih untuk mencapai tujuan ini melalui modul kontrol elektronik (ECM) atau unit kontrol elektronik (ECU) - yang merupakan "komputer" dalam mesin. ECM/ECU menerima sinyal kecepatan mesin melalui sensor dan menggunakan algoritma dan mencari tabel kalibrasi yang disimpan dalam ECM/ECU, dia mengontrol jumlah bahan bakar dan waktu melalui aktuator elektronik atau hidraulik untuk mengatur kecepatan mesin.

B.  Klasifikasi Mesin
a.    Mesin Otto
Siklus Otto adalah siklus termodinamika yang paling banyak digunakan dalam kehidupan manusia. Mobil dan sepeda motor berbahan bakar bensin (Petrol Fuel) adalah contoh penerapan dari sebuah siklus Otto. Mesin bensin dibagi menjadi dua, yaitu mesin dua tak dan mesin empat tak.

Mesin dua tak adalah mesin yang memerlukan dua kali gerakan piston naik turun untuk sekali pembakaran (agar diperoleh tenaga). Mesin tersebut banyak digunakan pada motor-motor kecil. Mesin dua tak menghasilkan asap sebagai sisa pembakaran dari oli pelumas.

Mesin empat tak memerlukan empat kali gerakan piston untuk sekali pembakaran. Pada motor-motor besar biasa menggunakan mesin empat tak. Akan tetapi, sekarang banyak motor-motor kecil bermesin empat tak. Mesin jenis ini sedikit menghasilkan sisa pembakaran karena bahan bakarnya hanya bensin murni.

              
Gambar di atas merupakan mesin pembakaran dalam empat langkah (empat tak). Mula-mula campuran udara dan uap bensin mengalir dari karburator menuju silinder pada saat piston bergerak ke bawah (langkah masukan). Selanjutnya campuran udara dan uap bensin dalam silinder ditekan secara adiabatik ketika piston bergerak ke atas (langkah kompresi atau penekanan). Karena ditekan secara adiabatik maka suhu dan tekanan campuran meningkat. Pada saat yang sama, busi memercikkan bunga api sehingga campuran udara dan uap bensin terbakar. Ketika terbakar, suhu dan tekanan gas semakin bertambah. Gas bersuhu tinggi dan bertekanan tinggi tersebut memuai terhadap piston dan mendorong piston ke bawah (langkai pemuaian). Selanjutnya gas yang terbakar dibuang melalui katup pembuangan dan dialirkan menuju pipa pembuangan (langkah pembuangan). Katup masukan terbuka lagi dan keempat langkah tersebut diulangi kembali.

Tujuan dari adanya langkah kompresi atau penekanan adiabatik adalah menaikkan suhu dan tekanan campuran udara dan uap bensin. Proses pembakaran pada tekanan yang tinggi akan menghasilkan suhu dan tekanan (P = F/A) yang sangat besar. Akibatnya gaya dorong (F = PA) yang dihasilkan selama proses pemuaian menjadi sangat besar. Mesin motor atau mobil menjadi lebih bertenaga. Walaupun tidak ditekan, campuran udara dan uap bensin bisa terbakar ketika busi memercikkan bunga api. Tapi suhu dan tekanan gas yang terbakar tidak terlalu tinggi sehingga gaya dorong yang dihasilkan juga kecil. Akibatnya mesin menjadi kurang bertenaga.       

Proses perubahan bentuk energi dan perpindahan energi pada mesin pembakaran dalam empat langkah di atas bisa dijelaskan seperti ini : Ketika terjadi proses pembakaran, energi potensial kimia dalam bensin + energi dalam udara berubah menjadi kalor alias panas. Sebagian kalor berubah menjadi energi mekanik batang piston dan poros engkol, sebagian kalor dibuang melalui pipa pembuangan (knalpot). Sebagian besar energi mekanik batang piston dan poros engkol berubah menjadi energi mekanik kendaraan (kendaraan bergerak), sebagian kecil berubah menjadi kalor alias panas sedangkan panas timbul akibat adanya gesekan.

Secara termodinamika, siklus Otto memiliki 4 buah proses termodinamika yang terdiri dari 2 buah proses isokhorik (volume tetap) dan 2 buah proses adiabatis (kalor tetap).

b.   Mesin Diesel
Siklus Rankine adalah siklus termodinamika yang mengubah panas menjadi kerja. Panas disuplai secara eksternal pada aliran tertutup, yang biasanya menggunakan air sebagai fluida yang bergerak. Siklus ini menghasilkan 80% dari seluruh energi listrik yang dihasilkan di seluruh dunia. Siklus ini dinamai untuk mengenang ilmuan Skotlandia, William John Maqcuorn Rankine.

Siklus Rankine adalah model operasi mesin uap panas yang secara umum ditemukan di pembangkit listrik. Sumber panas yang utama untuk siklus Rankine adalah batu bara, gas alam, minyak bumi, nuklir, dan panas matahari.

Efisiensi siklus Rankine biasanya dibatasi oleh fluidanya. Tanpa tekanan yang mengarah pada keadaan super kritis, range temperatur akan cukup kecil. Uap memasuki turbin pada temperatur 565 °C (batas ketahanan stainless steel) dan kondenser bertemperatur sekitar 30°C. Hal ini memberikan efisiensi Carnot secara teoritis sebesar 63%, namun kenyataannya efisiensi pada pembangkit listrik sebesar 42%.



                Gambar Mesin Diesel (Siklus Rankine)

 Gambar ini menunjukkan siklus diesel ideal (sempurna). Mula-mula udara ditekan secara adiabatik (a-b), lalu dipanaskan pada tekanan konstan – penyuntik (injector) menyemprotkan solar dan terjadilah pembakaran (b-c), gas yang terbakar mengalami pemuaian adiabatik (c-d), pendinginan pada volume konstan – gas yang terbakar dibuang ke pipa pembuangan dan udara yang baru, masuk ke silinder (d-a).
 Asumsi yang digunakan pada siklus diesel ini sama dengan pada siklus Otto, kecuali langkah penambahan panas. Pada siklus diesel langkah 2-3 merupakan penambahan panas pada tekanan konstan.
C.  Siklus Otto dan Diesel
a.    Siklus Otto
Siklus Otto adalah siklus thermodinamika yang paling banyak digunakan dalam kehidupan manusia. Mobil dan sepeda motor berbahan bakar bensin (Petrol Fuel) adalah contoh penerapan dari sebuah siklus Otto. Niklaus August Otto (1832-1891) adalah seorang penemu berkebangsaan Jerman yang pada tahun 1876 menciptakan mesin dengan empat dorongan pembakaran.
Siklus Otto adalah siklus ideal untuk mesin torak dengan pengapian-nyala bunga api. Pada mesin pembakaran dengan sistem pengapian-nyala ini, campuran bahan bakar dan udara dibakar dengan menggunakan percikan bunga api dari busi. Piston bergerak dalam empat langkah (disebut juga mesin dua siklus) dalam silinder, sedangkan poros engkol berputar dua kali untuk setiap siklus termodinamika. Mesin seperti ini disebut mesin pembakaran internal empat langkah.


1.      Campuran udara dan uap bensin dalam silinder ditekan secara adiabatik ketika piston bergerak ke atas (langkah kompresi / compression stroke).
2.      Karena ditekan secara adiabatik maka suhu dan tekanan campuran meningkat. Pada saat yang sama, busi memercikkan bunga api sehingga campuran udara dan uap bensin terbakar. Ketika terbakar, suhu dan tekanan gas semakin bertambah. Gas bersuhu tinggi dan bertekanan tinggi tersebut memuai terhadap piston dan mendorong piston ke bawah (power stroke).
3.      Selanjutnya gas yang terbakar dibuang melalui katup pembuangan dan dialirkan menuju pipa pembuangan (langkah pembuangan / exhaust stroke).
4.      Katup masukan terbuka lagi, campuran udara dan uap bensin mengalir dari karburator menuju silinder pada saat piston bergerak ke bawah (langkah masukan / intake stroke). Selanjutnya ke-empat langkah diulang kembali.

Secara thermodinamika, siklus ini memiliki 4 proses thermodinamika yang terdiri dari 2 buah proses isokhorik (volume tetap) dan 2 buah proses adiabatis (kalor tetap). Untuk lebih jelasnya dapat dilihat diagram tekanan (p) vs temperatur (V) berikut:

 

Keterangan:
 Langkah 0-1 adalah langkah isap. Campuran udara dan uap bensin masuk ke dalam silinder.
 Langkah 1-2 adalah langkah pemampatan. campuran udara dan uap bensin ditekan secara adiabatik
 Garis 2-3 adalah pembakaran secara cepat yang menghasilkan pemanasan gas pada volume konstan. Campuran udara dan uap bensin dipanaskan pada volume konstan campuran dibakar.
 Langkah 3-4 adalah langkah ekspansi gas panas. Gas yang terbakar mengalami pemuaian adiabatik
 Sedang segmen 4-1 turunnya tekanan secara tiba-tiba karena dibukanya katup buang. Pendinginan pada volume konstan – gas yang terbakar dibuang ke pipa pembuangan dan campuran udara + uap bensin yang baru, masuk ke silinder.
 Setelah itu gas dibuang pada langkah 1-0
Maksud siklus seperti pada gambar di atas beserta penjelasannya adalah sebagai berikut:
1.      Langkah isap (0-1) dan langkah buang (1-0) dianggap sebagai proses tekanan tetap.
2.      Langkah pemampatan (1-2) dianggap berlangsung secara adiabatik, karena proses tersebut berlangsung sangat cepat sehingga dianggap tidak ada panas yang sempat keluar sistem.
3.      Proses pembakaran (garis 2-3) dianggap sebagai pemasukan (pengisian) kalor pada volume konstan.
4.      Langkah kerja (3-4) dianggap juga berlangsung adiabatik. Penjelasan sama dengan nomor 2.
5.      Proses penurunan tekanan karena pembukaan katup buang (garis 4-1) dianggap sebagai pengeluaran    (pembuangan) kalor pada volume tetap.
6.      Fluida kerja dianggap gas ideal sehingga memenuhi hukum-hukum gas ideal.
Perlu diketahui bahwa tujuan dari adanya langkah kompresi alias penekanan adiabatik adalah menaikkan suhu dan tekanan campuran udara dan uap bensin. Proses pembakaran pada tekanan yang tinggi akan menghasilkan suhu dan tekanan (P = F/A) yang sangat besar. Akibatnya gaya dorong (F = PA) yang dihasilkan selama proses pemuaian menjadi sangat besar. Mesin motor atau mobil menjadi lebih bertenaga. Walaupun tidak ditekan, campuran udara dan uap bensin bisa terbakar ketika si busi memercikkan bunga api. Tapi suhu dan tekanan gas yang terbakar tidak terlalu tinggi sehingga gaya dorong yang dihasilkan juga kecil. Akibatnya mesin menjadi kurang bertenaga.

Proses pemuaian dan penekanan secara adiabatik pada siklus otto bisa digambarkan melalui diagram di bawah. (Diagram ini menunjukkan model ideal dari proses termodinamika yang terjadi pada mesin pembakaran dalam yang menggunakan bensin).

  MESIN 2 TAK                                      
Pada prinsipnya motor bakar 2 langkah (2 tak) melakukan siklus Otto hanya dalam dua langkah piston atau satu putaran poros engkol. Penemuan motor bakar 2 tak sukses oleh Sir Dougald Clerk tahun 1876. Ada 2 langkah saat mesin 2 tak beroperasi.
Langkah pertama:
  •  Piston bergerak dari TMA (Titik Mati Atas) ke TMB (Titik Mati Bawah)
  • Pada saat piston bergerak dari TMA ke TMB, maka akan menekan ruang bilas yang berada di bawah     piston. Semakin jauh piston meninggalkan TMA menuju TMB, tekanan di ruang bilas semakin meningkat.
  • Pada titik tertentu, piston (ring piston) akan melewati lubang pembuangan gas dan lubang pemasukan gas.
  •  Pada saat ring piston melewati lubang pembuangan, gas di dalam ruang bakar keluar melalui lubang pembuangan.
  • Pada saat ring piston melewati lubang pemasukan, gas yang tertekan dalam ruang bilas akan terpompa     masuk dalam ruang bakar sekaligus mendiring gas yang ada dalam ruang bakar keluar melalui lubang pembuangan.
  • Piston terus menekan ruang bilas sampai titik TMB, sekaligus memompa gas dalam ruang bilas masuk ke dalam ruang bakar.


Langkah kedua:
  •  Piston bergerak dari TMB ke TMA.
  • Pada saat piston bergerak dari TMB ke TMA, maka akan menghisap gas hasil pencampuran udara, bahan bakar dan pelumas masuk ke dalam ruang bilas. Percampuran ini dilakukan oleh karburator sistem injeksi.
  • Saat melewati lubang pemasukan dan lubang pembuangan, piston akan mengkompresi gas yang terjebak dalam ruang bakar.
  • Piston akan terus mengkompresi gas dalam ruang bakar sampai TMA.
  • Beberapa saat sebelum piston sampai di TMA, busi menyala untuk membakar gas dalam ruang bakar. Waktu nyala busi sebelum piston sampai TMA dengan tujuan agar puncak tekanan dalam ruang bakar akibat pembakaran terjadi saat piston mulai bergerak dari TMA ke TMB karena proses pembakaran sendiri memerlukan waktu dari mulai nyala busi sampai gas terbakar dengan sempurna.


MESIN 4 TAK
Mesin 4 tak adalah mesin pembakaran dalam yang dalam satu siklus pembakaran terjadi empat langkah piston (hisap, tekan, bakar, buang).
Langkah pertama:
  • Piston bergerak dari TMA ke TMB, posisi katup masuk terbuka dan katup keluar tertutup,           mengakibatkan gas atau udara terhisap masuk ke dalam ruang bakar.

Langkah kedua:
  • Piston bergerak dari TMB ke TMA, posisi katup masuk dan keluar tertutup, mengakibatkan udara atau gas dalam ruang bakar terkompresi. Beberapa saat sebelum piston sampai pada posisi TMA,         waktu penyalaan bunga api terjadi, pada mesin bensin berupa nyala busi.

Langkah ketiga:
  • Gas yang terbakar dalam ruang bakar akan meningkatkan tekanan dalam ruang bakar, mengakiBatkan piston terdorong dari TMA ke TMB. Langkah ini adalah proses langkah            pembakaran.

Langkah keempat:
  • Piston bergerak dari TMB ke TMA, posisi katup masuk tertutup dan katup keluar terbuka,            mengakibatkan gas hasil pembakaran terdorong keluar  menuju saluran pembuangan. Atau yang          disebut proses buang.


            Siklus Otto adalah siklus thermodinamika yang paling banyak digunakan dalam kehidupan manusia. Mobil dan sepeda motor berbahan bakar bensin (Petrol Fuel) adalah contoh penerapan dari sebuah siklus Otto.

            Secara thermodinamika, siklus ini memiliki 4 buah proses thermodinamika yang terdiri dari 2 buah proses isokhorik (volume tetap) dan 2 buah proses adiabatis (kalor tetap). Untuk lebih jelasnya dapat dilihat diagram tekanan (p) vs temperatur (V) berikut:

 

Proses yang terjadi adalah :
1-2 : Kompresi adiabatis
2-3 : Pembakaran isokhorik
3-4 : Ekspansi / langkah kerja adiabatis
4-1 : Langkah buang isokhorik


b.      Siklus Aktual Mesin Bensin 
Siklus udara volume konstan atau siklus otto adalah proses yang ideal. Dalam kenyataannya baik siklus volume konstan, siklus tekanan konstan dan siklus gabungan tidak mungkin dilaksanakan, karena adanya beberapa hal sebagai berikut :
1.   Fluida kerja bukanlah udara yang bisa dianggap sebagai gas ideal, karena fluida kerja di sini adalah campuran bahan bakar (premium) dan udara, sehingga tentu saja sifatnya pun berbeda dengan sifat gas ideal.
2.   Kebocoran fluida kerja pada katup (valve), baik katup masuk maupun katup buang, juga kebocoran pada piston dan dinding silinder, yang menyebabkan tidak optimalnya proses.
3.   Baik katup masuk maupun katup buang tidak dibuka dan ditutup tepat pada saat piston berada pada posisi TMA dan atau TMB, karena pertimbangan dinamika mekanisme katup dan kelembaman fluida kerja. Kerugian ini dapat diperkecil bila saat pembukaan dan penutupan katup disesuaikan dengan besarnya beban dan kecepatan torak.
4.   Pada motor bakar torak yang sebenarnya, saat torak berada di TMA tidak terdapat proses pemasukan kalor seperti pada siklus udara. Kenaikan tekanan dan temperatur fluida kerja disebabkan oleh proses pembakaran campuran udara dan bahan bakar dalam silinder.
5.   Proses pembakaran memerlukan waktu untuk perambatan nyala apinya, akibatnya proses pembakaran berlangsung pada kondisi volume ruang yang berubah-ubah sesuai gerakan piston. Dengan demikian proses pembakaran harus dimulai beberapa derajat sudut engkol sebelum torak mencapai TMA dan berakhir beberapa derajat sudut engkol sesudah TMA menuju TMB. Jadi proses pembakaran tidak dapat berlangsung pada volume atau tekanan yang konstan.
6.   Terdapat kerugian akibat perpindahan kalor dari fluida kerja ke fluida pendingin, misalnya oli, terutama saat proses kompresi, ekspansi dan waktu gas buang meninggalkan silinder. Perpindahan kalor tersebut terjadi karena ada perbedaan temperatur antara fluida kerja dan fluida pendingin.
7.   Adanya kerugian energi akibat adanya gesekan antara fluida kerja dengan dinding silinder dan mesin.
8.   Terdapat kerugian energi kalor yang dibawa oleh gas buang dari dalam silinder ke atmosfer sekitarnya. Energi tersebut tidak dapat dimanfaatkan untuk kerja mekanik.
Pada siklus aktual pada mesin bensin fluida kerja sesuai dengan kejadian secara aktualnya, yaitu campuran bahan bakar dan udara. Pada siklus ini kalor merupakan hasil dari proses pembakaran. Untuk langkah hisap tekanan lebih rendah dibanding dengan langkah buang. Proses kompresi dan ekspansi tidak pada kondisi adiabatis karena pada proses ini terdapat kerugian panas. Proses pembakaran dari penyalaan busi sampai akhir pembakaran.



c.       Siklus Diesel
Siklus motor diesel merupakan siklus udara pada tekanan konstan. Pada umumnya jenis motor bakar diesel dirancang untuk memenuhi siklus ideal diesel yaitu seperti siklus otto tetapi proses pemasukan kalornya dilakukan pada tekanan konstan.

Keterangan
1.      Langkah isap (0 → 1) merupakan proses tekanan konstan.
2.      Langkah kompresi (1 → 2) merupakan proses isentropik
3.      Proses pembakanan pada tekanan konstan (2 → 3) adalah proses pemasukan kalor.
4.      Langkah kerja (3 → 4) merupakan proses isentropik
5.      Langkah pembuangan (4 → 1) dianggap sebagai proses pengeluaran kalor pada volume konstan.
6.      Langkah buang (1 → 0) terjadi pada tekanan konstan
siklus diesel terdapat rasio pancung (cutoff ratio) yang terjadi pada proses pembakaran seperti yang terlihat pada diagram diatas proses 2-3. Untuk proses pada siklus diesel 4 langkah dapat dilihat pada gambar:



Pada gambar pertama (kiri ke kanan) merupakan langkah kompresi setelah udara masuk ke dalam ruang bakar. Udara ini dikompresi hingga mempunyai tekanan
yang sangat tinggi sekali. Pada gambar kedua merupakan proses injeksi bahan bakar. Akibat tekanan udara yang sangat tinggi sekali dan injeksi dari bahan bakar tersebut menyebabkan terjadinya pembakaran. Pada gambar ketiga merupakan langkah tenaga dimana akibat   ledakan dari pembakaran tadi piston didorong ke bawah dan menyebabkan terjadinya daya/power. Pada gambar keempat merupakan langkah buang, dimana sisa dari pembakaran dibuang ke lingkungan.
Untuk kompresi rasio yang sama siklus diesel mempunyai efisiensi yang lebih tinggi dibandingkan dengan siklus otto. Adapun rumus untuk mencari efisiensi siklus diesel adalah:


Efisiensi siklus diesel yang tinggi menyebabkan siklus ini digunakan untuk mesin-mesin dengan kapasitas besar. Seperti yang terdapat pada truk, lokomotif, mesin kapal, dan pembangkit tenaga listrik darurat (genset). 


Jika anda ingin melihat selengkapnya bisa klik download untuk mendapatkan filenya. Semoga bermanfaat dan terima kasih atas kunjungannya